geolime.geostats.models.covariance¶
Classes:
|
Metaclass for defining Abstract Base Classes (ABCs). |
|
|
|
|
|
Generic enumeration. |
|
|
|
|
|
|
|
|
|
Data:
|
Callable type; Callable[[int], str] is a function of (int) -> str. |
|
The central part of internal API. |
Functions:
|
A decorator indicating abstract methods. |
|
Anisotropic distance between two points according to the anisotropy matrix a. |
|
Applies a covariance model to a given grid for variance calculus |
|
Computes the distance matrix of two sets of points in the Euclidean space according to a distance. |
|
Compute the Euclidean distance between two points. |
|
Rotation againt the Z axis |
|
Example of a convention (RGeoStats) |
|
Compute the angles in radians necessary for matrix rotation operation from geographic azimuth, dip and pitch angles defined in degrees |
-
class
geolime.geostats.models.covariance.
Covariance
(dim: int, angles: List[float] = [0.0, 0.0, 0.0], scales: List[float] = [1.0, 1.0, 1.0], convention: Callable = <function rot_zyx>)¶ Bases:
object
Methods:
apply_model
(variogram[, method, …])Compute the model matching an experimental variogram
cov_func
(h)Covariance model to be defined when derived
eval
(x, y[, method])Applies a covariance model to a distance matrix computed from a set of vectors
Retrieve number of covariance elements
Retrieve total sill
Check if the covariance is a pure nugget (single element Nugget)
plot
(variogram[, method, border_ratio, nlag])Plot an experimental variogram
-
apply_model
(variogram: pandas.core.frame.DataFrame, method: enum.Enum = 'semivariogram', border_ratio: float = 1.1, nlag: int = 200)¶ Compute the model matching an experimental variogram
- Parameters
variogram (pd.DataFrame) – Variogram to be plotted
method (Enum) – “semivariogram” or “covariogram”
border_ratio (float) – Plot extend
nlag (int) – Number of lags
- Returns
- Return type
None
-
abstract
cov_func
(h: numpy.ndarray)¶ Covariance model to be defined when derived
- Parameters
h (np.ndarray) – Distance matrix
- Returns
Covariance
- Return type
type
-
eval
(x: numpy.ndarray, y: numpy.ndarray, method: enum.Enum = 'covariogram')¶ Applies a covariance model to a distance matrix computed from a set of vectors
- Parameters
x (np.ndarray) – First vector
y (np.ndarray) – Second vector
method (Enum) – covariogram or semivariogram
- Returns
Covariance
- Return type
np.ndarray
-
get_n_cov
()¶ Retrieve number of covariance elements
-
get_total_sill
()¶ Retrieve total sill
- Returns
Sum of sills
- Return type
float
-
is_pure_nugget
()¶ Check if the covariance is a pure nugget (single element Nugget)
-
plot
(variogram: pandas.core.frame.DataFrame, method: enum.Enum = 'semivariogram', border_ratio: float = 1.1, nlag: int = 200)¶ Plot an experimental variogram
- Parameters
variogram (pd.DataFrame) – Variogram to be plotted
method (Enum) – “semivariogram” or “covariogram”
border_ratio (float) – Plot extend
nlag (int) – Number of lags
- Returns
- Return type
None
-
-
class
geolime.geostats.models.covariance.
CovarianceElem
(dim: int, angles: List[float] = None, scales: List[float] = None, cov_func: Callable = None, convention: Callable = None, name: str = '')¶ Bases:
object
Methods:
eval
(x1, x2)Applies a covariance model to a distance matrix computed from a set of vectors
update
()Updates covariance parameters according to covariance type
-
eval
(x1: numpy.ndarray, x2: numpy.ndarray)¶ Applies a covariance model to a distance matrix computed from a set of vectors
- Parameters
x2 (np.ndarray) – First vector
x1 (np.ndarray) – Second vector
- Returns
Computed covariance
- Return type
np.ndarray
-
get_anisotropy
()¶
-
update
()¶ Updates covariance parameters according to covariance type
-
-
class
geolime.geostats.models.covariance.
Exponential
(dim: int = 3, angles: List[float] = None, scales: List[float] = None, convention: Callable = None)¶ Bases:
geolime.geostats.models.covariance.Covariance
Methods:
cov_func
(h)Exponential covariance model
-
cov_func
(h: numpy.ndarray)¶ Exponential covariance model
- Parameters
h (np.ndarray) – Distance matrix
- Returns
Covariance
- Return type
np.ndarray
-
-
class
geolime.geostats.models.covariance.
Gaussian
(dim: int = 3, angles: List[float] = None, scales: List[float] = None, convention: Callable = None)¶ Bases:
geolime.geostats.models.covariance.Covariance
Methods:
cov_func
(h)Exponential covariance model
-
cov_func
(h: numpy.ndarray)¶ Exponential covariance model
- Parameters
h (np.ndarray) – Distance matrix
- Returns
Covariance
- Return type
np.ndarray
-
-
class
geolime.geostats.models.covariance.
Nugget
(dim: int = 3, angles: List[float] = None, scales: List[float] = None, convention: Callable = None)¶ Bases:
geolime.geostats.models.covariance.Covariance
Methods:
cov_func
(h)Nugget covariance model
-
cov_func
(h: numpy.ndarray)¶ Nugget covariance model
- Parameters
h (np.ndarray) – Distance matrix
- Returns
Covariance
- Return type
np.ndarray
-
-
class
geolime.geostats.models.covariance.
Spherical
(dim: int = 3, angles: List[float] = None, scales: List[float] = None, convention: Callable = None)¶ Bases:
geolime.geostats.models.covariance.Covariance
Methods:
cov_func
(h)Spherical covariance model
-
cov_func
(h: numpy.ndarray)¶ Spherical covariance model
- Parameters
h (np.ndarray) – Distance matrix
- Returns
Covariance
- Return type
np.ndarray
-
-
geolime.geostats.models.covariance.
cvv
(cov: geolime.geostats.models.covariance.Covariance, pattern_generator: geolime.geostats.patterns.pattern_generator.PatternGenerator = None, lag: List[float] = None, method: enum.Enum = 'covariogram')¶ Applies a covariance model to a given grid for variance calculus
- Parameters
cov (Covariance) – Covariance model to be applied
pattern_generator (PatternGenerator) – Optional points pattern to consider for cvv calculation E.g. refinment pattern of a grid cell into [x, x, x]
lag (List[float]) – Lag for the computation of the spatial regularized covariance. If None, lag will be set to 0 (block variance)
method (Enum) – “covariogram” or “semivariogram”
- Returns
Regularized Covariance
- Return type
float