geolime.geostats.simulation.turning_bands¶
Data:
|
Callable type; Callable[[int], str] is a function of (int) -> str. |
Classes:
|
|
|
|
|
|
|
|
|
Change the maximal number of threads that can be used in thread pools. |
Functions:
|
Initialize conditional simulation against observed values (in Gaussian space). |
Applies Simple Kriging on conditional simulations |
|
|
Compute Discrete Gaussian Kriging weights |
|
Evaluate at x a function determined by its coefficients in the Hermite expansion. |
|
Create a dataset from point mean in common blocks |
|
Evaluate simulations on an input grid. |
|
This function will initialize Turning Band method for computing unconditional simulations from a covariance structure. |
|
Initialize Turning Band method on an atomic covariance element |
|
Applies unconditional simulations on input coordinates (evaluated as distances). |
|
Prepares one simulation with the Turning Band method. |
|
Compute random function with the Turning Band method. |
-
geolime.geostats.simulation.turning_bands.
direct_block_simu_init
(target_grid: geolime.objects.grid.Grid, xcoords: numpy.ndarray, xdatgauss: numpy.ndarray, cov_gauss_block: geolime.geostats.models.covariance.Covariance, r: float, nbands: int = 400, nbsimus: int = 1, seed: int = None)¶ Initialize conditional simulation against observed values (in Gaussian space). This function will first compute the unconditional simulations with the input covariance structure using the Turning Band method. Data will then be grouped for simple kriging application on simulation results.
- Parameters
target_grid (Grid) – Target grid (used for boundary check in unconditional simulation computation)
xcoords (np.ndarray) – Input coordinates associated with the input observed data
xdatgauss (np.ndarray) – Observed data (in Gaussian space)
cov_gauss_block (Covariance) – Covariance structure for unconditional simulation application.
r (float) – Change of support coefficient
nbands (int, optional) – Number of bands for spectral measure computation
nbsimus (int, optional) – Number of simulations to be applied
seed (int, optional) – Random generator seed
- Returns
Simulation initialization array, center coordinates, number of points in blocks, simulation residuals
- Return type
np.ndarray, np.ndarray, int, np.ndarray
-
geolime.geostats.simulation.turning_bands.
direct_block_simulations_on_a_set
(target_grid: geolime.objects.grid.Grid, neigh: geolime.geostats.math.neighborhood.Neighborhood, xcoordsc: numpy.ndarray, cov_gauss_block: geolime.geostats.models.covariance.Covariance, zsimu: numpy.ndarray, r: float, simu_res: numpy.ndarray, n_points_in_blocks: int, anam: numpy.ndarray = None, indices: range = None)¶ Applies Simple Kriging on conditional simulations
- Parameters
target_grid (Grid) – Target grid
neigh (Neighborhood) – Search neighborhood
xcoordsc (np.ndarray) – Center coordinates of blocks
cov_gauss_block (Covariance) – Blockl covariance model for Simple Kriging
zsimu (Callable) – Simulation function
r (float) – Change of support coefficient
simu_res (np.ndarray) – Simulation result on block containing data point
n_points_in_blocks (int) – Number of points in block
anam (np.ndarray) – Hermite coefficients from anamorphosis object for Discrete Gaussian Kriging
indices (range) – Block indices
- Returns
Conditional simulation result
- Return type
np.ndarray
-
geolime.geostats.simulation.turning_bands.
simu_grid
(Zs: Callable, grid: geolime.objects.grid.Grid, ind: range = None)¶ Evaluate simulations on an input grid. Grid coordinates will be given as input for applying simulation on each points of the grid.
- Parameters
Zs (Callable) – Simulation initialization after Turning Band method application
grid (Grid) – Input grid from which coordinates will be evaluated.
ind (range, optional) – Grid index to apply simulations
- Returns
Simulation result for the input grid from which covariance has been evaluated.
- Return type
np.ndarray
-
geolime.geostats.simulation.turning_bands.
simu_grid_init
(cov: geolime.geostats.models.covariance.Covariance, grid: geolime.objects.grid.Grid, nbsimus: int = 1, nbands: int = 400, seed: int = None)¶ This function will initialize Turning Band method for computing unconditional simulations from a covariance structure.
- Parameters
cov (Covariance) – Covariance structure
grid (Grid) – Input grid
nbsimus (int) – Number of simulations to be applied
nbands (int, optional) – Number of bands for spectral measure computation
seed (int, optional) – Random generator seed
- Returns
Function returning unconditional simulations
- Return type
Callable
-
geolime.geostats.simulation.turning_bands.
simu_grid_init_elem
(covelem: geolime.geostats.models.covariance.CovarianceElem, sill: float, grid: geolime.objects.grid.Grid, nbsimus: int = 1, nbands: int = 400, seed: int = None)¶ Initialize Turning Band method on an atomic covariance element
- Parameters
covelem (CovarianceElem) – Atomic covariance element
sill (float) – Constraint sill
grid (Grid) – Input grid to retrieve boundaries
nbsimus (int, optional) – Number of simulations to be applied
nbands (int, optional) – Number of bands for spectral measure computation
seed (int, optional) – Random generator seed
- Returns
Function returning simulation initialization for an atomic covariance element
- Return type
Callable
-
geolime.geostats.simulation.turning_bands.
simu_points
(Zs: Callable, coords: numpy.ndarray)¶ Applies unconditional simulations on input coordinates (evaluated as distances).
- Parameters
Zs (Callable) – Simulation function
coords (np.ndarray) – Input coordinates
- Returns
Applies simulations on coordinates.
- Return type
np.ndarray
-
geolime.geostats.simulation.turning_bands.
spherical_3d_random_function_tb
(scale: float, sill: float, nbands: int, xmin: float, xmax: float, anisotropy: numpy.ndarray = None, seed: int = None)¶ Prepares one simulation with the Turning Band method. This function applies the Spectral Method and returns a random function
- Parameters
scale (float) – Scale of an atomic covariance element
sill (float) – Sill of an atomic covariance element
nbands (int) – Number of bands for spectral measure computation
xmin (float) – Grid minimum boundary
xmax (float) – Grid maximum boundary
anisotropy (np.ndarray) – Anistopic distance for an atomic covariance element
seed (int) – Random generator seed
- Returns
Function computing one simulation random fucntion
- Return type
Callable
-
geolime.geostats.simulation.turning_bands.
spherical_3d_random_functions_tb
(scale: float, sill: float, nbands: int, xmin: float, xmax: float, anisotropy: numpy.ndarray = None, nfunctions: int = 1, seed: int = None)¶ Compute random function with the Turning Band method. This function applies the Spectral Method on an atomic covariance element parameters.
- Parameters
scale (float) – Scale of an atomic covariance element
sill (float) – Sill constraint to be applied
nbands (int) – Number of bands for spectral measure computation
xmin (float) – Grid minimum boundary
xmax (float) – Grid maximum boundary
anisotropy (np.ndarray, optional) – Anistopic distance for an atomic covariance element
nfunctions (int, optional) – Number of simulations to be applied
seed (int, optional) – Random generator seed
- Returns
Function computing simulation realizations
- Return type
Callable