geolime.plotting.vario_plot

Classes:

Covariance(dim, angles, 0.0, 0.0], scales, …)

Enum(value)

Generic enumeration.

ScalarMappable([norm, cmap])

A mixin class to map scalar data to RGBA.

Data:

Dict

The central part of internal API.

List

The central part of internal API.

Functions:

ceil(x, /)

Return the ceiling of x as an Integral.

directional_vector(dimension, …[, deg])

Compute directional vector from angles

pairs_plot_2d(coords, index, projection)

Debug function that displays pairs of points on a 2D projection plane.

pairs_plot_3d(coords, index, title)

Debug function that displays pairs of points on a 3D space.

plot_semivariogram(variograms[, model, …])

Semivariogram plot

shift(input, shift[, output, order, mode, …])

Shift an array.

vario_contour(coords, values, lags, tol, …)

Plot VarioContour as Pie Chart.

vario_map(coords, values, lags, tol, n_az, atol)

Plot VarioMap as Pie Chart.

variogram(coords, values, lags, tol, …[, …])

Given boundary input arguments (lag and its associated tolerance, angular reference and its associated tolerance), compute the variogram for a set of points (value associated with cartesian coordinates for a specific point)

geolime.plotting.vario_plot.pairs_plot_2d(coords: numpy.ndarray, index: List[int], projection: enum.Enum)

Debug function that displays pairs of points on a 2D projection plane. Mostly for debugging purposes.

Parameters
  • coords (np.ndarray) – cartesian coordinates

  • index (List[int]) – list of pairs

  • projection (Enum) – projection plane to be considered (‘xy’, ‘xz’ or yz)

Returns

A 2D matplotlib plot

Return type

None

geolime.plotting.vario_plot.pairs_plot_3d(coords: numpy.ndarray, index: List[int], title: str)

Debug function that displays pairs of points on a 3D space. Mostly for debugging purposes.

Parameters
  • coords (np.ndarray) – cartesian coordinates

  • index (List[int]) – list of pairs

  • title (str) – a title string to be displayed on the plot

Returns

A 3D matplotlib plot

Return type

None

geolime.plotting.vario_plot.plot_semivariogram(variograms: List, model: geolime.geostats.models.covariance.Covariance = None, model_angles: List[Dict[str, float]] = None, display_npairs: bool = False, method: enum.Enum = 'semivariogram', nlag: int = 100, border_ratio: float = 1)

Semivariogram plot

Parameters
  • variograms (List[pd.DataFrame]) – A pandas DataFrame with at least ‘vario’ column in it

  • model (Covariance) – optional, covariance model to be applied

  • model_angles (List[Dict[str, float]]) – optional, display variogram model along other orientations specified as dict of {azi: float, dip: float, pitch: float, label: str}

  • display_npairs (bool) – Display barplot with number of pairs if True

  • method (Enum) – “covariogram” or “semivariogram”

  • nlag (int) – Number of lag samples

  • border_ratio (float) – Border extent ratio

Returns

A matplotlib plot

Return type

None

geolime.plotting.vario_plot.vario_contour(coords: numpy.ndarray, values: numpy.ndarray, lags: List[float], tol: float, n_az: int, atol: float)

Plot VarioContour as Pie Chart. Angle of slice equals angular tolerance and slice radius equals lag distance.

Parameters
  • coords (np.ndarray) – Cartesian coordiantes of samples values

  • values (np.ndarray) – Sample values

  • lags (List[float]) – List of lags, in meters

  • tol (float) – Lag tolerance, in percent

  • n_az (int) – Number of azimuth to compute variogram

  • atol (float) – Angular tolerance for variogram computation

geolime.plotting.vario_plot.vario_map(coords: numpy.ndarray, values: numpy.ndarray, lags: List[float], tol: float, n_az: int, atol: float)

Plot VarioMap as Pie Chart. Angle of slice equals angular tolerance and slice radius equals lag distance.

Parameters
  • coords (np.ndarray) – Cartesian coordiantes of samples values

  • values (np.ndarray) – Sample values

  • lags (List[float]) – List of lags, in meters

  • tol (float) – Lag tolerance, in percent

  • n_az (int) – Number of azimuth to compute variogram

  • atol (float) – Angular tolerance for variogram computation