geolime.plotting.vario_plot¶
Classes:
|
|
|
Generic enumeration. |
|
A mixin class to map scalar data to RGBA. |
Data:
|
The central part of internal API. |
|
The central part of internal API. |
Functions:
|
Return the ceiling of x as an Integral. |
|
Compute directional vector from angles |
|
Debug function that displays pairs of points on a 2D projection plane. |
|
Debug function that displays pairs of points on a 3D space. |
|
Semivariogram plot |
|
Shift an array. |
|
Plot VarioContour as Pie Chart. |
|
Plot VarioMap as Pie Chart. |
|
Given boundary input arguments (lag and its associated tolerance, angular reference and its associated tolerance), compute the variogram for a set of points (value associated with cartesian coordinates for a specific point) |
-
geolime.plotting.vario_plot.
pairs_plot_2d
(coords: numpy.ndarray, index: List[int], projection: enum.Enum)¶ Debug function that displays pairs of points on a 2D projection plane. Mostly for debugging purposes.
- Parameters
coords (np.ndarray) – cartesian coordinates
index (List[int]) – list of pairs
projection (Enum) – projection plane to be considered (‘xy’, ‘xz’ or yz)
- Returns
A 2D matplotlib plot
- Return type
None
-
geolime.plotting.vario_plot.
pairs_plot_3d
(coords: numpy.ndarray, index: List[int], title: str)¶ Debug function that displays pairs of points on a 3D space. Mostly for debugging purposes.
- Parameters
coords (np.ndarray) – cartesian coordinates
index (List[int]) – list of pairs
title (str) – a title string to be displayed on the plot
- Returns
A 3D matplotlib plot
- Return type
None
-
geolime.plotting.vario_plot.
plot_semivariogram
(variograms: List, model: geolime.geostats.models.covariance.Covariance = None, model_angles: List[Dict[str, float]] = None, display_npairs: bool = False, method: enum.Enum = 'semivariogram', nlag: int = 100, border_ratio: float = 1)¶ Semivariogram plot
- Parameters
variograms (List[pd.DataFrame]) – A pandas DataFrame with at least ‘vario’ column in it
model (Covariance) – optional, covariance model to be applied
model_angles (List[Dict[str, float]]) – optional, display variogram model along other orientations specified as dict of {azi: float, dip: float, pitch: float, label: str}
display_npairs (bool) – Display barplot with number of pairs if True
method (Enum) – “covariogram” or “semivariogram”
nlag (int) – Number of lag samples
border_ratio (float) – Border extent ratio
- Returns
A matplotlib plot
- Return type
None
-
geolime.plotting.vario_plot.
vario_contour
(coords: numpy.ndarray, values: numpy.ndarray, lags: List[float], tol: float, n_az: int, atol: float)¶ Plot VarioContour as Pie Chart. Angle of slice equals angular tolerance and slice radius equals lag distance.
- Parameters
coords (np.ndarray) – Cartesian coordiantes of samples values
values (np.ndarray) – Sample values
lags (List[float]) – List of lags, in meters
tol (float) – Lag tolerance, in percent
n_az (int) – Number of azimuth to compute variogram
atol (float) – Angular tolerance for variogram computation
-
geolime.plotting.vario_plot.
vario_map
(coords: numpy.ndarray, values: numpy.ndarray, lags: List[float], tol: float, n_az: int, atol: float)¶ Plot VarioMap as Pie Chart. Angle of slice equals angular tolerance and slice radius equals lag distance.
- Parameters
coords (np.ndarray) – Cartesian coordiantes of samples values
values (np.ndarray) – Sample values
lags (List[float]) – List of lags, in meters
tol (float) – Lag tolerance, in percent
n_az (int) – Number of azimuth to compute variogram
atol (float) – Angular tolerance for variogram computation