geolime.geostats.estimation.kriging¶
Classes:
|
|
|
|
|
|
|
|
|
Change the maximal number of threads that can be used in thread pools. |
Functions:
|
Ordinary / Simple kriging algorithm (punctual). |
|
Block kriging function. |
|
Punctual kriging function for a specific block node |
|
Compute kriging weights according to a covariance model |
|
Applies a covariance model to a given grid for variance calculus |
|
Apply discrete gaussian kriging on a grid. |
|
Apply discrete gaussian kriging on a grid block |
|
Apply discrete gaussian kriging on a set of grid indices. |
|
Compute Discrete Gaussian Kriging weights |
|
Create a dataset from point mean in common blocks |
|
Return indexes of block containing point |
-
geolime.geostats.estimation.kriging.
average_kriging
(xcoords: numpy.ndarray, xdat: numpy.ndarray, targets: numpy.ndarray, cov: geolime.geostats.models.covariance.Covariance, var: float, mean: float = None, variance_estim: bool = False, slope_regression: bool = False, kriging_efficiency: bool = False)¶ Ordinary / Simple kriging algorithm (punctual). If mean is given as input argument, simple kriging will be applied. Otherwise ordinary kriging is set as default.
- Parameters
xcoords (np.ndarray) – Reference coordinates for covariance calculus
xdat (np.ndarray) – Input data
targets (np.ndarray) – Points for estimation
cov (Covariance) – Covariance model to be applied
var (float) – Input variance
mean (float, optional) – Optional mean for simple kriging
variance_estim (bool, optional) – Optional. Indicates if the kriging variance (Var(Z^star)) has to be returned (for uniform conditioning) instead of sqrt(Var(Z^star)-Var(Z))
slope_regression (bool, optional) – Optional. When defined as True, include slope regression as an array in output list
kriging_efficiency (bool, optional) – Optional. When defined as True, include kriging efficiency as an array in output list
- Returns
Multiple arrays: kriging estimates and kriging stadard deviation
- Return type
np.ndarray
-
geolime.geostats.estimation.kriging.
block_kriging
(xcoords: numpy.ndarray, xdat: numpy.ndarray, points: numpy.ndarray, cov: geolime.geostats.models.covariance.Covariance, neigh: geolime.geostats.math.neighborhood.Neighborhood, pattern_generator: geolime.geostats.patterns.pattern_generator.PatternGenerator = None, mean: float = None, variance_estim: bool = False, slope_regression: bool = False, kriging_efficiency: bool = False)¶ Block kriging function. If discretization is a [1, 1, 1] array: punctual kriging. Block kriging otherwise.
- Parameters
xcoords (np.ndarray) – Reference coordinates for covariance calculus
xdat (np.ndarray) – Input data
points (np.ndarray) – List of points to estimate
cov (Covariance) – Covariance model to be applied
neigh (Neighborhood) – Neighborhood object
pattern_generator (PatternGenerator, optional) – Optional points pattern to consider for cvv calculation and transformation prior to kriging estimation E.g. refinment pattern of a grid cell into [x, x, x]
mean (float, optional) – Optional mean for simple kriging.
variance_estim (bool, optional) – Optional to compute estimation variance instead
slope_regression (bool, optional) – Optional. When defined as True, slope regression array will be included in output list
kriging_efficiency (bool, optional) – Optional. When defined as True, kriging efficiency array will be included in output list
- Returns
Kriging estimation and standard deviation arrays
- Return type
np.ndarray
-
geolime.geostats.estimation.kriging.
block_kriging_nodes
(xcoords: numpy.ndarray, xdat: numpy.ndarray, point: numpy.ndarray, cov: geolime.geostats.models.covariance.Covariance, neigh: geolime.geostats.math.neighborhood.Neighborhood, pattern_generator: geolime.geostats.patterns.pattern_generator.PatternGenerator, var: float, mean: float = None, variance_estim: bool = False, slope_regression: bool = False, kriging_efficiency: bool = False)¶ Punctual kriging function for a specific block node
- Parameters
xcoords (np.ndarray) – Reference coordinates for covariance calculus
xdat (np.ndarray) – Input data
point (np.ndarray) – Point to consider for estimation
cov (Covariance) – Covariance model to be applied
neigh (Neighborhood) – Neighborhood object
pattern_generator (PatternGenerator) – Optional function to apply points transformation prior to estimation
var (float) – Variance
mean (float, optional) – Optional mean for simple kriging.
variance_estim (bool, optional) – Optional to compute estimation variance instead
slope_regression (bool, optional) – Optional. When defined as True, slope regression array will be included in output list
kriging_efficiency (bool, optional) – Optional. When defined as True, kriging efficiency array will be included in output list
- Returns
Kriging estimates and standard deviation arrays
- Return type
np.ndarray
-
geolime.geostats.estimation.kriging.
compute_weights
(xcoords: numpy.ndarray, targets: numpy.ndarray, cov: geolime.geostats.models.covariance.Covariance)¶ Compute kriging weights according to a covariance model
- Parameters
xcoords (np.ndarray) – Reference coordinates for covariance calculus
targets (np.ndarray) – Points for covariance evaluation
cov (Covariance) – Covariance model
- Returns
Multiple output containing the simple kriging weights, kriging means, Ordinary kriging weights, initial covariance and a debugging weight array
- Return type
np.ndarray
-
geolime.geostats.estimation.kriging.
discrete_gaussian_kriging
(target_grid: geolime.objects.grid.Grid, xcoords: numpy.ndarray, xdata: numpy.ndarray, cov: geolime.geostats.models.covariance.Covariance, neigh: geolime.geostats.math.neighborhood.Neighborhood, r: float)¶ Apply discrete gaussian kriging on a grid. Doesn’t require data grouping and input indices.
- Parameters
target_grid (Grid) – Grid to apply discrete gaussian kriging to
xcoords (np.ndarray) – Input coordinates (not centered)
xdata (np.ndarray) – Input values
cov (Covariance) – Covariance model to be applied
neigh (Neighborhood) – Neighborhood to be considered for kriging
r (float) – Change of support coefficient
- Returns
Kriging estimation and standard deviation array
- Return type
np.ndarray
-
geolime.geostats.estimation.kriging.
discrete_gaussian_kriging_block
(point: numpy.ndarray, xcoordsc: numpy.ndarray, mean_by_block: numpy.ndarray, n_points_in_blocks: numpy.ndarray, cov: geolime.geostats.models.covariance.Covariance, neigh: geolime.geostats.math.neighborhood.Neighborhood, r: float)¶ Apply discrete gaussian kriging on a grid block
- Parameters
point (np.ndarray) – Point to apply discrete gaussian kriging to
xcoordsc (np.ndarray) – Center coordinates
mean_by_block (np.ndarray) – Block mean array
n_points_in_blocks (np.ndarray) – Number of points in block array
cov (Covariance) – Covariance model to be applied
neigh (Neighborhood) – Neighborhood to be considered for kriging
r (float) – Change of support coefficient
- Returns
Kriging estimation and standard deviation arrays
- Return type
List
-
geolime.geostats.estimation.kriging.
discrete_gaussian_kriging_by_index
(points: numpy.ndarray, xcoords_c: numpy.ndarray, mean_by_block: numpy.ndarray, n_points_in_blocks: numpy.ndarray, cov: geolime.geostats.models.covariance.Covariance, neigh: geolime.geostats.math.neighborhood.Neighborhood, r: float)¶ Apply discrete gaussian kriging on a set of grid indices. To be used after grouping the data in block centers.
- Parameters
points (np.ndarray) – Points to apply discrete gaussian kriging to
xcoords_c (np.ndarray) – Center coordinates
mean_by_block (np.ndarray) – Mean by block array
n_points_in_blocks (np.ndarray) – Number of points in block array
cov (Covariance) – Covariance model to be applied
neigh (Neighborhood) – Neighborhood to be considered for kriging
r (float) – Change of support coefficient
- Returns
Description of returned object.
- Return type
type
-
geolime.geostats.estimation.kriging.
discrete_gaussian_weights
(target_node: numpy.ndarray, coords: numpy.ndarray, n: int, cov: geolime.geostats.models.covariance.Covariance, r: float)¶ Compute Discrete Gaussian Kriging weights
- Parameters
target_node (np.ndarray) – Node array to apply Discrete Gaussian Kriging to
coords (np.ndarray) – Input coordinates array
n (int) – Number of points in block
cov (Covariance) – Covariance model to be applied
r (float) – Change of support coefficient
- Returns
Weights and covariance arrays
- Return type
np.ndarray
-
geolime.geostats.estimation.kriging.
group_data
(target_grid: geolime.objects.grid.Grid, xcoords: numpy.ndarray, xdata: numpy.ndarray)¶ Create a dataset from point mean in common blocks
- Parameters
target_grid (Grid) – Input grid from which to group blocks
xcoords (np.ndarray) – Input coordinates
xdata (np.ndarray) – Input values to be grouped and mean estimated
- Returns
Multiple arrays are returned: a center coordinates array, the number of points in blocks and the block means
- Return type
np.ndarray
-
geolime.geostats.estimation.kriging.
in_which_block
(x: numpy.ndarray, grid: geolime.objects.grid.Grid)¶ Return indexes of block containing point
- Parameters
x (np.ndarray) – Input coordinates
grid (Grid) – Input grid to be parsed
- Returns
List of block indices
- Return type
List[int]