geolime.geostats.estimation.uniform_conditioning¶
Classes:
|
|
|
|
|
|
|
|
|
Change the maximal number of threads that can be used in thread pools. |
Functions:
|
Punctual kriging function for a specific block node |
|
Compute the change of support coefficient |
|
Applies a covariance model to a given grid for variance calculus |
|
Evaluate at x a function determined by its coefficients in the Hermite expansion. |
|
Evaluate germite expansion for metal |
|
Compute theoretical inverse anamorphosis for a single value. |
|
Compute inverse variance |
|
Apply non Conditional Expectation given hermite coefficients anamorphosis and a cut-off value |
|
Apply Uniform Conditoning on a Panel according to a cut off value. |
|
Apply Uniform Conditioning on a Panel Grid |
|
Prepare Uniform Conditioning on a panel by computing panel Kriging and Panel-Point support coefficient |
-
geolime.geostats.estimation.uniform_conditioning.
change_of_support
(anam: numpy.ndarray, cov_raw: geolime.geostats.models.covariance.Covariance, pattern_generator: geolime.geostats.patterns.pattern_generator.PatternGenerator, nlag: int = 100)¶ Compute the change of support coefficient
- Parameters
anam (np.ndarray) – Array describing characteristics of the anamorphosis used for calculating the change of support coefficient.
cov_raw (Covariance) – Value of the average covariance over the block.
pattern_generator (PatternGenerator) – Optional points pattern to consider for cvv calculation E.g. refinment pattern of a grid cell into [x, x, x]
nlag (int, optional) – Sampling lags used in the inverse calculation
- Returns
float – Change of support coefficient
np.ndarray – Block anamorphosis coefficients
-
geolime.geostats.estimation.uniform_conditioning.
inverse_var_function
(var: float, anam: numpy.ndarray, nlag: int = 100)¶ Compute inverse variance
- Parameters
var (float) – Variance array
anam (np.ndarray) – Anamorphosis results array
nlag (int, optional) – Sample lags
- Returns
Inverse variance array
- Return type
np.ndarray
-
geolime.geostats.estimation.uniform_conditioning.
ore_metal
(zcut: float, anam: numpy.ndarray)¶ Apply non Conditional Expectation given hermite coefficients anamorphosis and a cut-off value
- Parameters
zcut (float) – Cut-Off value
anam (np.ndarray) – Array describing characteristics of the anamorphosis used for calculating the change of support coefficient.
- Returns
np.ndarray – Proportion of metal above cut-off in a block
np.ndarray – Volumetric quantity of metal above cut-off in a block
-
geolime.geostats.estimation.uniform_conditioning.
uc
(zcut: float, kriging_gauss_panel: numpy.ndarray, anamblock: numpy.ndarray, r: float, s: float, ymin: float = - 4.5, ymax: float = 4.5, nlag: int = 100)¶ Apply Uniform Conditoning on a Panel according to a cut off value.
- Parameters
zcut (float) – Cut-Off value
kriging_gauss_panel (np.ndarray) – Panel Kriging results
anamblock (np.ndarray) – Array describing characteristics of the anamorphosis used for calculating the change of support coefficient.
r (float) – Block-Point change of support coefficient
s (float) – Panel-Point change of support coefficient
ymin (float, optional) – Minimum value for inverse computation of gaussian cut-off
ymax (float, optional) – Maximum value for inverse computation of gaussian cut-off
nlag (int, optional) – Discretization parameter for inverse computation of gaussian cut-off
- Returns
np.ndarray – Proportion of metal above cut-off in a block
np.ndarray – Volumetric quantity of metal above cut-off in a block
-
geolime.geostats.estimation.uniform_conditioning.
uc_on_grid
(anam: numpy.ndarray, panel_grid: geolime.objects.grid.Grid, data_coords: numpy.ndarray, data_values: numpy.ndarray, cov_raw: geolime.geostats.models.covariance.Covariance, neigh: geolime.geostats.math.neighborhood.Neighborhood, panel_pattern_generator: geolime.geostats.patterns.pattern_generator.PatternGenerator, zcut: numpy.ndarray, r: float, anamblock: numpy.ndarray)¶ Apply Uniform Conditioning on a Panel Grid
- Parameters
anam (np.ndarray) – Array describing characteristics of the anamorphosis used for calculating the block change of support coefficient.
panel_grid (Grid) – Panel Grid to apply Krigin
data_coords (np.ndarray) – Coordinates of conditioning data
data_values (np.ndarray) – Values of conditioning data
cov_raw (Covariance) – Value of the average covariance over the block.
neigh (Neighborhood) – Neighborhood model
panel_pattern_generator (PatternGenerator) – Panel pattern to consider for cvv calculation E.g. refinment pattern of a grid cell into [x, x, x]
zcut (np.ndarray) – Cut-Off values
r (float) – Block-Point change of support coefficient
anamblock (np.ndarray) – Array describing characteristics of the anamorphosis used for calculating the panel change of support coefficient.
- Returns
np.ndarray – Proportion of metal above cut-off for blocks in a panel
np.ndarray – Volumetric quantity of metal above cut-off
-
geolime.geostats.estimation.uniform_conditioning.
uc_prepare
(anam: numpy.ndarray, panel_center: numpy.ndarray, data_coords: numpy.ndarray, data_values: numpy.ndarray, cov_raw: geolime.geostats.models.covariance.Covariance, neighborhood: geolime.geostats.math.neighborhood.Neighborhood, pattern_generator: geolime.geostats.patterns.pattern_generator.PatternGenerator, var: float)¶ Prepare Uniform Conditioning on a panel by computing panel Kriging and Panel-Point support coefficient
- Parameters
anam (np.ndarray) – Array describing characteristics of the anamorphosis used for calculating the change of support coefficient.
panel_center (np.ndarray) – Center coordinates of considered panel
data_coords (np.ndarray) – Coordinates of conditioning data
data_values (np.ndarray) – Values of conditioning data
cov_raw (Covariance) – Value of the average covariance over the block.
neighborhood (Neighborhood) – Neighborhood model
pattern_generator (PatternGenerator) – Optional points pattern to consider for cvv calculation E.g. refinment pattern of a grid cell into [x, x, x]
var (float) – Block variance
- Returns
np.ndarray – Panel krigin gaussian results
np.ndarray – Panel-point support coefficient